Using a graphical interface for Fast FPGA design revision in SDR hierarchical structure

Frank Raffaeli: Principal RF Engineer, National Instruments Source files: ni.com/labs keyword: SDR

Compile: Compound v. (Latin, Italian) com-pila ; with battery, added voltage Increased tension

FPGA Signal Processing

- Numerically fast, high bandwidth
- Portable
- Deployable
- Re-configurable
- Slow design / prototyping turn-around
- Bottleneck through DSP engineer

Re-Configurability – What it is and isn't

IS

- Fast re-configuration / deployment
- Existing, mainstream Tools
- A firmware / software Macro
- Xilinx HW + LabViewFPGA + sauce
- Simple with penalties
- *low-cost*

Aka: RTC, RCM, Macro-cell

ISN'T

- Partial Re-config.
- Fast Xilinx compile
 - A hardware Macro
 - Custom HW, Software
 - Complex and Cryptic

ni.com

INSTR

B.H.A.G. Receiver Physical Layer in FPGA

Digital Proc (NI-7965R with V5 SX-95T)

B.H.A.G. Radio – Run-time configurable?

Demo – Re-configurable Receiver based on Xilinx SX95T (Virtex-5)

Soft Macrocell support pyramid

Physical layer "Generic" Soft

What the receiver chain would look like implemented with macro-cells

Can we make a generic block function - a.k.a "Soft Macro" ?

Requirements

- Parameterized
- Configurable at run-time
- Compiler support**
- High performance what compromises?
- Reasonably efficient utilization

Zoom In on Oscillator Function

Macro compatible?

ni.com

10

We need I & Q: The Injection Lock trick

-d/dt of cos(x) = sin(x), etc Adding a small signal to an oscillator makes the oscillator lock to that signal.

ni.com

11

Is it really a sine wave?

Test-bench result for Oscillator (32-bit)

125 MHz sample clock

Test-bench to reality transition - test bench limitations:

- 1. Multiply & add function doesn't meet timing
- 2. Implementation is large and inefficient
- 3. See #1 again

Injection-Locked Dual Oscillator - reality

How can this architecture be implemented in a re-configurable macro-cell?

Xilinx DSP48e – already reconfigurable

The heart of the re-configurable engine And the main building block of the type 1 macro-cell

Anatomy of the (type 2) Macrocell

Canonical Generic Macro-cells

Receiver Physical Layer – now a pre-compiled structure in the FPGA "Generic" macro-cell reduced to two types w/ interconnect framework

Comparing the Oscillator Footprint "Hardwired" vs. Type 1 Soft Macro-Cell

• FPGA Resource Consumption - Courtesy Dan Baker

Design	Slice FFs	Slice LUTs	DSP48Es	Block Rams
Dual Oscillator in T1 (18 bit)	340	294	4	0*
Sine & Cosine	1128	1108	0	0
Sine & Cosine with Dither	805	1093	3	0
Coregen DDS Taylor	389	260	1	1
Coregen DDS Dither	482	312	0	1

Complex multiplier in RTC Macrocell

(I+Qi) * (X+Yi) = I*X - Q*Y (real) ; Q*X + I*Y (imaginary)

Oscillator and ACG in RTC Macrocell

Oscillators are cross-coupled to maintain quadrature. I = frequency, X = AGC control

ni.com

21

Implementation efficiency vs. Compile time - the benefits of trial-and-error

- "We are ready for any unforeseen event that may or may not occur" - Dan Quayle
- Faster cycle time to evaluation of results
- More accessibility: parallel effort & sharing
- Optimized designs through increased collaboration
- Frees us up to make mistakes

Thank You

- ni.com/labs keywords: SDR, RCM, Macrocell
- Filename / folder: RCM.lvproj

frank.raffaeli@ni.com

Low Close-in noise

