
1

Using a graphical interface for Fast FPGA
design revision in SDR hierarchical structure

Frank Raffaeli: Principal RF Engineer, National Instruments
Source files: ni.com/labs keyword: SDR

2

FPGA Signal Processing

• Numerically fast, high bandwidth
• Portable
• Deployable
• Re-configurable
• Slow design / prototyping turn-around
• Bottleneck through DSP engineer

3

Re-Configurability – What it is and isn’t

• Fast re-configuration / deployment
• Existing, mainstream Tools
• A firmware / software Macro
• Xilinx HW + LabViewFPGA + sauce
• Simple with penalties
• *low-cost*

• Partial Re-config.
• Fast Xilinx compile
• A hardware Macro
• Custom HW, Software
• Complex and Cryptic

IS ISN’T

Aka: RTC, RCM, Macro-cell

4

B.H.A.G. Receiver Physical Layer in FPGA
Digital Proc (NI-7965R with V5 SX-95T)

(op)

Frequency
Conversion

Selectable
Bandwidth

“IF” Filter &
down-sample

n

Pre-selector

Digitized
RF

Log(x)

Signal
Strength

Carrier, sym
Recovery

Data

FFT,
Det

Decoder

“Generic” or Macro-cell Block Candidates

5

B.H.A.G. Radio – Run-time configurable?

3Gs/S
Digitizer

RF In

NI-5771

6

Demo – Re-configurable Receiver based
on Xilinx SX95T (Virtex-5)

Log(x)

Sym rec

decode

FFT

Mixer

Filter 1 Filter 2
To Host

NI-7965R with V5 SX-95T
NI-5771
3 Gs/S
Digitizer

Antenna

7

Soft Macrocell support pyramid

8

Physical layer “Generic”
What the receiver chain would look like implemented with macro-cells

Mac1 Mac2 Mac3 Mac4 Mac5
RF Data

“Front End” “Back End”
Front-End
Pre-selector
Frequency Conversion
Hi speed filtering

Back-End
FFT, Demodulator
Precision filtering
Complex functions

Function of all blocks are configurable at run-time

Soft

9

Can we make a generic block function -
a.k.a “Soft Macro” ?

Requirements
• Parameterized
• Configurable at run-time
• Compiler support**
• High performance – what compromises?
• Reasonably efficient utilization

10

Zoom In on Oscillator Function

Z-1

Z-1

+

2r*cos 
f(max)=fs/2 0

r

-r2
“Z” domain: unit circle
R ≤ 1 for stability

Macro compatible?

11

We need I & Q: The Injection Lock trick

I

Qd/dt

-d/dt

-112 dB

–d/dt of cos(x) = sin(x), etc …. Adding a small signal to
an oscillator makes the oscillator lock to that signal.

Video

12

Aha Moment

Is it really a sine wave?

Surprising (to an
analog engineer) to
get a sine wave from
two delay elements

13

Test-bench result for Oscillator (32-bit)

“Looks great – like lots of
simulations”

- Bill Reid, Chief Architect National Instruments

14

Test-bench to reality transition
- test bench limitations:

1. Multiply & add function doesn’t meet timing
2. Implementation is large and inefficient
3. See #1 again

15

Injection-Locked Dual Oscillator - reality

How can this architecture be implemented in a re-configurable macro-cell?

LabView
FPGA
Module

DSP48e cell made
timing a reality

16

Xilinx DSP48e – already reconfigurable

The heart of the re-configurable engine
And the main building block of the type 1 macro-cell

17

Anatomy of the (type 2) Macrocell

18

Canonical Generic Macro-cells
Receiver Physical Layer – now a pre-compiled structure in the FPGA
“Generic” macro-cell reduced to two types w/ interconnect framework

Type 1 Type 1 Type 1

Feed-forward connections

Feedback connections

Type 2 Type 2
RF Data

Mux

Type 2 – optimized for:
IF & recursive Filters
Demodulators, FFT
Med speed, dynamic

Type 1 – optimized for:
Fast Filters
Oscillators, multipliers
Hi speed, static

19

Comparing the Oscillator Footprint
“Hardwired” vs. Type 1 Soft Macro-Cell
• FPGA Resource Consumption - Courtesy Dan Baker

Design Slice FFs Slice LUTs DSP48Es Block Rams
Dual Oscillator in T1 (18 bit) 340 294 4 0*
Sine & Cosine 1128 1108 0 0
Sine & Cosine with Dither 805 1093 3 0
Coregen DDS Taylor 389 260 1 1
Coregen DDS Dither 482 312 0 1

20

Complex multiplier in RTC Macrocell

(I+Qi) * (X+Yi) = I*X – Q*Y (real) ; Q*X + I*Y (imaginary)

21

Oscillator and ACG in RTC Macrocell

Oscillators are cross-coupled to maintain quadrature.
I = frequency, X = AGC control

22

Implementation efficiency vs. Compile time
- the benefits of trial-and-error

• Faster cycle time to evaluation of results
• More accessibility: parallel effort & sharing
• Optimized designs through increased collaboration
• Frees us up to make mistakes

“We are ready for any unforeseen event that may or
may not occur” - Dan Quayle

23

Thank You

• ni.com/labs keywords: SDR, RCM, Macrocell
• Filename / folder: RCM.lvproj

frank.raffaeli@ni.com

24

Low Close-in noise

